走进通信:5G高频率的“蝴蝶效应”

“蝴蝶效应”,想必很多人都听说过——在一个动力系统中,初始条件下细小的转变能动员整个系统的历久的伟大的连锁反映。这是一种混沌征象。任何事物生长均存在定数与变数,事物在生长过程中其生长轨迹有纪律可循,同时也存在不能测的“变数”,往往还会适得其反,一个细小的转变能影响事物的生长,说明事物的生长具有庞大性。

用蝴蝶效应来比喻5G频率的转变对整个通讯生态造成的影响可能不太准确,但频率的转变简直对通讯生态造成了不小的影响,这也相符蝴蝶效应中的“一个细小的转变能影响事物的生长”,不精确,却较为相符。

5G相对4G而言,高频率的使用,是其一大特点,这个特点也影响了通讯生态中的其他组成部分,包罗基站、终端、MIMO等。我们先来聊一下5G的频率。

频率

现在的移动通讯手艺已经迈入了5G时代,这一切的基础都源自于一个公式—波长与频率的公式(此处特指电磁波)

式中c为光速,λ是波长,v是电磁波的频率。现在三大运营商所持有的4G频率我们也都知道了,如下图:

拿中国移动来看的话,从GSM时代的900Mhz最先到现在LTE时代的2.6Ghz,频率的转变不能谓不大,而频率变高所带来的优势也是显而易见的,更高的接入用户数、更快的网络速率及更低的时延,而这也恰恰的高频率的特点——频率越高,带宽越宽,速率更快,固然这个也不难理解。

举个例子,1Mhz—2Mhz带宽只有1M,然则1Ghz—2Ghz,其带宽就是1000M,我们照样用高速路来打比方吧,带宽越宽,高速路车行道就越多,四车道变为八车道甚至更多,统一时间内通过的车辆就更多,意味着网速就越快。

去年12月,我国三大移动运营商已经获得全国局限5G中低频段试验频率使用允许。

其中,中国电信获得3400MHz-3500MHz共100MHz带宽的5G试验频率资源;中国移动获得2515MHz-2675MHz、4800MHz-4900MHz频段的5G试验频率资源,其中2515-2575MHz、2635-2675MHz和4800-4900MHz频段为新增频段,2575-2635MHz频段为重耕中国移动现有的TD-LTE(4G)频段;中国联通获得3500MHz-3600MHz共100MHz带宽的5G试验频率资源。

上述频段中,中频频段有3.4-3.6GHz、4.8-5GHz两个频段,剩下的就是低频频段。

频率的转变引起的第一个通讯生态中的“蝴蝶效应”就是5G的基站了,其附带的也改变了5G的网络笼罩模式。

开头的公式很明确的指出,波长=光速/频率,也就是频率的变高直接导致波长的变短,这就是5G中所说的毫米波。

我们可以拿国际上主要使用28GHz来举个例子:

Hz是频率的单元。频率是指电脉冲,交流电波形,电磁波,声波和机械的振动周期循环时,1秒钟重复的次数。1Hz代表每秒钟周期震惊1次,60Hz代表每秒周期震惊60次。Hz是个很小的单元,通常在其前面加上K(千),M(百万),G(十亿),T(万亿)等数目级单元。

电磁波的特点是频率越高(波长越短),就越趋近于直线流传,这也意味着其衍射能力(指波遇到障碍物时偏离原来直线流传的物理征象)就越差;5G高频率的电磁波其流传途径的路径消耗也要远大于4G,这就意味着要到达相同的信号笼罩效果,5G基站的部署量要远多于4G,对运营商而言,又意味着要花钱了。

基于5G的特点,4G时代的宏基站局限性笼罩已经变得不好使了,之前4G一个宏基站可以笼罩100米(仅做参考说明,非现实值),到5G这里也许只能笼罩30米,5G更快的速率、更宽的带宽及更低的时延的“价值”就是运营商需要投入更多的钱来部署更多的基站。

波长越短,天线越短

从年老大时代的外置式手机天线到现在的内置天线,手机天线的进化史恰恰也反映了移动通讯的进化历程,而这两者的关系,源于天线与波长的关系。

天线长度与频率成反比,与波长成正比,频率越高,波长越短,天线也就可以做得越短。

一段金属导线中的交变电流能够向空间发射交替转变的感应电场和感应磁场,这就是无线电信号的发射。相反,空间中交变的电磁场在遇到金属导线时又可以感应出交变的电流,这对应了无线信号的吸收。

在电台举行发射和吸收时都希望导线中的交变电流能够有用的转换成为空间中的电磁波,或空间中的电磁波能够最有用的转换成导线中的交变电流。这就对用于发射和吸收的导线有获取最佳转换效率的要求,知足这样要求的用与发射和吸收无线电磁波信号的导线称为天线。

理论和实践证明,当天线的长度为无线电信号波长的1/4时,天线的发射和吸收转换效率最高。因此,天线的长度将凭据所发射和吸收信号的频率即波长来决议。只要知道对应发射和吸收的中央频率就可以用下面的公式算出对应的无线电信号的波长,再将算出的波长除以4就是对应的最佳天线长度。

天线的变短,这就意味着终端制造商可以在小小的机身内在多做几根天线,从而增强信号,这就是现在终端厂商都喜欢提的MIMO。

有关MIMO,IT之家笔者在之前的《频段和信号那些事:浅谈LTE的MIMO多天线手艺》做过详细先容,有兴趣的可以看一下。在此,我们来说一下5G的MIMO手艺。

Massive MIMO

MIMO(Multiple-Input Multiple-Output)是指在发射端和吸收端划分使用多个发射天线和吸收天线,它与传统的信号处置方式的差别之处在于其同时从时间和空间两个方面研究信号的处置问题,从而能够在不增添带宽与发射功率的前提下,提高系统的数据速率、削减误比特率、改善无线信号的传送质量。

Massive MIMO我们可以将其理解为MIMO的进化版,LTE时代的MIMO多为2通道、4通道及8通道,而Massive MIMO的通道数则可到达64/128/256,几乎是指数增长了。

LTE时代的MIMO模式,在做信号笼罩时现实上只做到了水平笼罩,而Massive MIMO在其信号水平维度空间基础上引入垂直维度的空域举行行使,信号的辐射状是个电磁波束。以是Massive MIMO也称为3D-MIMO。

现有资料显示,Massive MIMO的优势详细有以下几点:

高复用增益和分集增益:大规模MIMO系统的空间分辨率与现有MIMO系统相比显著提高,它能深度挖掘空间维度资源,使得基站笼罩局限内的多个用户在统一时频资源上行使大规模MIMO提供的空间自由度与基站同时举行通讯,提升频谱资源在多个用户之间的复用能力,从而在不需要增添基站密度和带宽的条件下大幅度提高频谱效率。

高能量效率:大规模MIMO系统可形成更窄的波束,集中辐射于更小的空间区域内,从而使基站与UE之间的射频传输链路上的能量效率更高,削减基站发射功率消耗,是构建未来高能效绿色宽带无线通讯系统的主要手艺。

高空间分辨率:大规模MIMO系统具有更好的鲁棒性能。由于天线数目远大于UE数目,系统具有很高的空间自由度,系统具有很强的抗滋扰能力。当基站天线数目趋于无限时,加性高斯白噪声和瑞利衰落等负面影响全都可以忽略不计。

只管Massive MIMO的优势很显著,但现阶段该手艺还存在一些问题亟待解决,好比:若何放置天线?若何建模3D频道?若何将其应用于FDD操作?若何从大阵列天生宽光束?若何校准天线系统?若何处置调剂和预编码的庞大性等。

事实上,Massive MIMO对于5G的意义,也可以看成是对频率资源的妥协。

我们知道若是运营商使用低频频段或者中频频段,那就可以实现天线的全向收发,至少也可以在一个很宽的扇面上收发。中低频段也就是现在LTE所使用的频段,然则凭据工信部给三大运营商分配的5G试验频段来看,很显著,中低频的的资源是不够用的,高频的劣势在于路径消耗大,再加上国家对发射功率是有划定的,这样一来,就只能在天线上下功夫了。由于毫米波的泛起,天线的尺寸进一步缩小,既然不能增添功率,那就增添天线数目吧,这就是多天线阵列。

凭据3GPPR1-136362的说法,在高频场景下,5G信号穿过建筑物的穿透消耗也会大大增添。这些因素都市增添信号笼罩的难度。特别是对于室内笼罩来说,用室外宏站笼罩室内用户变得越来越不能行。

然则使用Massive MIMO(即多天线阵列),可天生高增益、可调治的赋形波束,从而显著改善信号笼罩,由于其波束异常窄,也可以大大削减对周边的滋扰。

不外多天线阵列也是把双刃剑。多天线阵列的大部分发射能量群集在一个异常窄的区域。这意味着,使用的天线越多,波束宽度越窄。

多天线阵列的优点是,差别的波束之间,差别的用户之间的滋扰比较少,由于差别的波束都有各自的聚焦区域,这些区域都异常小,彼此之间不大有交集。

多天线阵列的瑕玷则在于系统必须用异常庞大的算法来找到用户的准确位置,否则就不能精准地将波束瞄准这个用户。因此,波束治理和波束控制(波束赋形)对Massive MIMO的主要性就不言而喻了。

总结:

现实上5G是很庞大的,单一频率转变引起的“蝴蝶效应”已经多到“罄竹难书”,好比多天线是若何保证信号不被滋扰、波束赋形的作用等,若是有兴趣的话我们可以下篇文章中一起探讨一下。

5G作为新手艺,其远景无疑的灼烁的,正如“蝴蝶效应”说的那样,5G的泛起,动员了整个系统的历久的伟大的连锁反映,好比车联网人工智能智慧都会守候。

既然如此,那就让5G的蝴蝶同党可劲扑棱吧,这个效果,我们能蒙受得住。

留下评论